Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Circuit quantum electrodynamics with a spin qubit

Identifieur interne : 001F36 ( Main/Repository ); précédent : 001F35; suivant : 001F37

Circuit quantum electrodynamics with a spin qubit

Auteurs : RBID : Pascal:12-0431107

Descripteurs français

English descriptors

Abstract

Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor1-3. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling4, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms5-7. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity8,9. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots10. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0431107

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Circuit quantum electrodynamics with a spin qubit</title>
<author>
<name sortKey="Petersson, K D" uniqKey="Petersson K">K. D. Petersson</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mcfaul, L W" uniqKey="Mcfaul L">L. W. Mcfaul</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schroer, M D" uniqKey="Schroer M">M. D. Schroer</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jung, M" uniqKey="Jung M">M. Jung</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Taylor, J M" uniqKey="Taylor J">J. M. Taylor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Joint Quantum Institute/NIST</s1>
<s2>College Park, Maryland 20742</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Joint Quantum Institute/NIST</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Houck, A A" uniqKey="Houck A">A. A. Houck</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Petta, J R" uniqKey="Petta J">J. R. Petta</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="04">
<s1>Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0431107</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0431107 INIST</idno>
<idno type="RBID">Pascal:12-0431107</idno>
<idno type="wicri:Area/Main/Corpus">001619</idno>
<idno type="wicri:Area/Main/Repository">001F36</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0028-0836</idno>
<title level="j" type="abbreviated">Nature : (Lond.)</title>
<title level="j" type="main">Nature : (London)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electron spin</term>
<term>Long range interaction</term>
<term>Nearest neighbour</term>
<term>Quantum computing</term>
<term>Quantum dots</term>
<term>Quantum electrodynamics</term>
<term>Quantum entanglement</term>
<term>Rotation speed</term>
<term>Spin dynamics</term>
<term>Spin-orbit interactions</term>
<term>Strong interactions</term>
<term>Trapped electrons</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electrodynamique quantique</term>
<term>Spin électronique</term>
<term>Electron piégé</term>
<term>Point quantique</term>
<term>Plus proche voisin</term>
<term>Calcul quantique</term>
<term>Interaction longue distance</term>
<term>Intrication quantique</term>
<term>Interaction forte</term>
<term>Interaction spin orbite</term>
<term>Dynamique spin</term>
<term>Vitesse rotation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor
<sup>1-3</sup>
. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling
<sup>4</sup>
, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms
<sup>5-7</sup>
. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity
<sup>8,9</sup>
. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots
<sup>10</sup>
. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0028-0836</s0>
</fA01>
<fA02 i1="01">
<s0>NATUAS</s0>
</fA02>
<fA03 i2="1">
<s0>Nature : (Lond.)</s0>
</fA03>
<fA05>
<s2>490</s2>
</fA05>
<fA06>
<s2>7420</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Circuit quantum electrodynamics with a spin qubit</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PETERSSON (K. D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MCFAUL (L. W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHROER (M. D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JUNG (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TAYLOR (J. M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HOUCK (A. A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PETTA (J. R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Joint Quantum Institute/NIST</s1>
<s2>College Park, Maryland 20742</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>380-383</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>142</s2>
<s5>354000502061510240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0431107</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nature : (London)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor
<sup>1-3</sup>
. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling
<sup>4</sup>
, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms
<sup>5-7</sup>
. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity
<sup>8,9</sup>
. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots
<sup>10</sup>
. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00C67L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Electrodynamique quantique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum electrodynamics</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Spin électronique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electron spin</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Electron piégé</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Trapped electrons</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Plus proche voisin</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nearest neighbour</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Vecino más cercano</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Calcul quantique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantum computing</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Interaction longue distance</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Long range interaction</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Interacción larga distancia</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Intrication quantique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quantum entanglement</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Interaction forte</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Strong interactions</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Interaction spin orbite</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Spin-orbit interactions</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dynamique spin</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Spin dynamics</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Vitesse rotation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Rotation speed</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Velocidad rotación</s0>
<s5>37</s5>
</fC03>
<fN21>
<s1>338</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001F36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0431107
   |texte=   Circuit quantum electrodynamics with a spin qubit
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024